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Abstract

A methodology is developed to determine the spectral boundary between wind features that can be
considered slowly varying, and the more rapidly-varying, or turbulent, features of measured wind
profiles. Pairs of measured wind velocity versus altitude profiles from the Eastern and Western
launch ranges of the United States were used to establish the vertical wavelengths which could no
longer be considered slowly varying over discrete time intervals. Analyses were performed for wind
pairs that were 30, 60, 90 and 120 minutes apart. The wavelength boundary between slowly-varying
and turbulent wind features as a function of time interval is presented. The results of this work make
it possible to identify and extract the slowly-varying and turbulent wind features at a particular launch
site.
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indicates second measurement of a wind pair
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boundary wavenumber for n" ATwind pair
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Power Spectral Density of A wind u-component, ft's cycle’
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n" wind pair, n=1,2,...,N,,

zonal (west, east) component of wind
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time interval between wind measurements, min
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1. Introduction

Aerodynamic pressure acting on a launch vehicle during atmospheric flight is a significant source of
structural loading."” This loading is greatly influenced by the atmospheric wind through which the
vehicle flies.>® Loads analyses are typically divided into those that can be performed just prior to
launch and those that have to be completed prior to the day of launch.”® Both sets of loads are then
combined statisticallx _lust prior to launch to estimate the total vehicle loads that are then compared to
the allowable values.”

A vertical wavelength can be thought of as an altitude-dependent wind feature which modulates the
angle of attack of a launch vehicle as it flies through the wind. There may be many spectral
components of various vertical wavelengths present within any altitude sample of a wind profile.
Spectral analysis is possible, where the independent variable is altitude. Loads calculations performed
on the day of launch are reasonable for that portion of the load that is associated with the slowly-
varying vertical wavelengths in the wind velocity versus altitude profile. Typical wind profiles
containing both the slowly-varying and the turbulent features of the wind are shown in Figs. 1 and 2
for a pair of balloon measurements.
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Figure 1. Example profile of a 30-minute wind pair from Eastern Range measured
870318 at 1630z and 1700z. U (west, east) component on left and V (south,
north) component on right show longer vertical wavelengths persistent over

this time period.

It is intuitive that longer vertical wavelengths are more slowly varying over time than shorter
wavelengths. It is evident in Figs. 1 and 2 that the longer vertical wavelengths are more slowly
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varying and that the shorter vertical wavelengths vary much more over time. The variation is more
evident as the time interval increases from 30 minutes to 90 minutes in Figs. 1 and 2. Loads due to
the rapidly-varying, or turbulent, components of the wind should be treated statistically and
independent of the measured day-of-launch wind. To do this, it is critical that the boundary between
the slowly and rapidly-varying components of the wind be identified.
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Figure 2. Example profile of a 90-minute wind pair from Eastern Range measured 870318 at
1630z and 1800z. Fewer long vertical wavelengths are persistent compared to the
previous 30-minute wind pair.




2. Procedure

The coherence-squared function applied to wind pairs form the basis here for determining the
wavenumber, f, which defines the spectral boundary between the slowly-varying and the turbulent
wind features. A wavenumber'' represents the number of waves of a particular wavelength in a unit
distance. A wavenumber is also the inverse of the wavelength, A, the distance between two successive
crests of a single periodic component in the vertical wind profile. Denote (U,, V,) to be the zonal (u,
west-east) and meridional (v, south-north) components of the “A-wind” measured at some given
instance; and (U,, V,) to be the “B-wind,” occurring AT minutes later. In day-of-launch operations,
the A-wind will be known from measurements, and the unknown B-wind is the wind profile through
which the launch vehicle will fly. Therefore, the B-wind is viewed as a perturbation of the A-wind. In
terms of the u-component, we would have at any altitude, h,

U,(h)=U,(h)+ N,(h) (N

where, N, is the “u-noise” component accounting for non-persistent changes in U,. The coherence-
square function for the u-component of a pair of A and B winds is defined by,

Gy, (A
Gyw. (NG y ()

(2)

I (N=

', > s the cross spectral density (CSD) function of U, and Ug; and G, , and G, are the
power spectral density (PSD) functions of U, and U,, respectively.

where, G
If we assume'that N, is uncorrelated to U,, then Eq. (2) simplifies to

1
Gy n, (N))Gyu, ()

I ()=

which gives a coherence-squared value of 0.5 for a signal-to-noise ratio of 1. Since longer
wavelength wind features are more slowly varying, we would expect I, , to be monotonically

decreasing with wavenumber, f. Therefore, the wavenumber for which the coherence-square value is
equal to 0.5 will be used here to define the spectral boundary between the slowly-varying and
turbulent wind features.

Similarly, define the coherence-squared function for the v-component of a pair of A and B winds by,

2
Gy, () @
GVAVA (f)Gv,,v,, f)

rév,, (f) =

To determine a spectral boundary between slowly-varying and turbulent wind features which is
applicable to both u and v components, the coherence-squared functions in Egs. (2) and (4) can be
combined using a PSD weighted average. Specifically, let
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Gy, () +Gyu, (f)

5
Gooo, D)+ Gy (1) + Gy, (N)+ G, () ™)

Bu(f)'_-

and,

Gy, (N +Gyy, (f)

6
Gy v, (/)+ Gy () Gy, (F)+ Gy, () ()

ev(f)=

represent the fraction of the total energy for the u and v components, respectively. The weighted
average coherence-squared function for a given wind pair is defined as,

ave

r,=, Iz, +6, T, (7

The wavenumber, f, determined from

I2.(f)=05 (8)

is taken to be the boundary which spectrally separates the slowly-varying and turbulent wind features.

Computation of the coherence-squared function is accomplished using the Discrete Fourier
Transform (DFT) as described in Bendat and Piersol."” For each wind pair, only winds corresponding
to altitudes between 5K ft and SOK ft were used. Estimation of the CSD and PSD which appear in the
numerator and denominator of Egs. (2) and (4) was performed using a 50 percent overlapping
process with a DFT block size corresponding to 10K ft. Additionally, each data block had its mean
removed and was tapered using a Hanning window prior to applying the DFT.




3. Overview of Study

Measured wind profiles, consisting of wind speed and direction as a function of altitude in 100-foot
increments from approximately the ground to approximately 50,000 ft, were gathered from an
extensive historical winds database. These profiles are typically displayed as the zonal and the
meridional wind magnitude components (Fig. 1). Only wind profiles measured with Jimsphere
balloons were used since they are known to have better vertical resolution than Windsonde balloons,
the other common measurement system.'>'® Wind profiles with significant data gaps were excluded
from this study.

The winds represented all months of the year dating back to 1964 at both the Eastern Range (ER) in
Florida, and the Western Range (WR) at Vandenberg Air Force Base in California (Tables 1, 2). Wind
pairs were identified where the time interval between the measured wind profiles, AT, was 30, 60, 90,
and 120 minutes (£5 minutes for each) (Table 1). These are the range of time intervals typically
used during day-of-launch operations. There were 1134 wind pairs identified.

Table 1. Monthly Distribution of Wind Pairs Evaluated from Both Eastern
Range (ER) and Western Range (WR) That Were Measured 30, 60,
90, and 120 Minutes (x5 Minutes) Apart

ER Wind Pairs WR Wind Pairs
AT (min) 30 60 90 120 Sum 30 60 90 120 Sum Total
January 0 3 29 24 56 10 12 14 20 56 112

February 12 17 42 42 113 4 6 14 11 35 148
March 13 I 22 28 74 2 7 9 16 34 108
April 8 14 25 26 73 20 19 7 17 63 136

May 4 6 21 17 48 4 5 14 20 43 91
June 3 4 10 11 28 0 2 117 2 48

July 1 6 22 23 52 0 4 9 10 23 75
August 5 8§ 31 18 62 0 1 13 8 22 84
September 0 4 37 17 58 2 2 15 7 26 84
October 1 9 20 14 44 8 13 7 6 34 78
November 4 8 22 16 50 0 4 13 15 32 82

December I 10 23 17 51 9 10 8 10 37 88
Sum 52 100 304 253 709 59 85 134 147 425 1134
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Table 2.

Yearly Distribution of Wind Pairs Evaluated from Both Eastern Range (ER)

and Western Range (WR) That Were Measured 30, 60, 90, and 120 Minutes
(£5 Minutes) Apart

ER Wind Pairs

WR Wind Pairs

AT(min) 30 60 90 120 Sum 30 60 90
964 ... 2. . 2 0,
195 5 5 3 13 10 10
1966 . 3. 4. 6 13 1 Al
1967 7 29 21 571 1.5 1 7
198 1 2 24 7 34 2 2
1969 . o 3 .13 0
970 11 _..0
9116 6 4 3.1
o2 113 24 1 6 1 8
1973 2 2 .
1974 . 27 2 - .0
1975 1l 1 .0
9 1.7 8
1977 L3 M9 390039
1978 ) 2 1 3
1979 1 1
1980 112
1984 . R N T !
1987 23 15 110 107 255 82 64 146
1988 18 13 31 13 16 29
1989 1.1 23 22 -4
199 6 4 10 36 37 S £
91 2 3 2 1 .8 .0
1994 3 11 3 7 24 . —
1995 14 9 9 3 .35 6. . _ 6. .12
1996 9 13 6 4 32 4 4. 8
1997 26 15 4 9 413
Sum 52 100 304 253 709 59 85 134 147 425

16

120 Sum Total

2
23
24
64
36
13

1
13
32
22
27
11

8

1134



When initially looking at the wind profiles, it was obvious that the general trend was for vertical
wavelengths to be less persistent as the time interval was increased. With a 30-minute interval, the two
wind profiles typically appear somewhat similar (Fig. 1), but at larger time intervals, it becomes
obvious that the vertical wavelengths are less persistent (Fig. 2). This lack-of-persistence was then
quantified in the following manner.

For each wind pair, PSD analyses were performed using the method described in the previous section.
The block size influences the smallest discernible wavenumber and the wavenumber resolution, while
the wind profile altitude resolution determines the largest wavenumber because of the Nyquist
constraint. Therefore, wavenumbers between 0.0001 and 0.005 are displayed. These correspond to
wavelengths between 10,000 and 200 ft. The PSDs were reviewed for reasonableness: the linearity
typically observed in the measurable wavenumber region and the start of the noise floor at roughly a
500-ft wavelength. Figures 3 and 4 are typical PSD plots of the wind profiles. The U and V wind
components are approximately linear in the measurable range and reach the noise floor at a
wavenumber of approximately 0.002 cycle/ft, or a wavelength of approximately 500 ft. There is little
observable difference between the PSD plots of 30-minute and 90-minute wind pairs.
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Figure 3. Example power spectral density of a 30-minute wind pair from Eastern Range
measured 870318 at 1630z and 1700z. U and V wind components are linear in
measurable range and reach the noise floor at approximately 0.002 cycle/foot
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Figure 4. Example power spectral density of a 90-minute wind pair from Eastern Range
measured 870318 at 1630z and 1800z. U and V wind components are linear in
measurable range and reach the noise floor at approximately 0.002 cycle/foot
(500 feet). Little difference is observed compared to 30-minute pair.
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Next, Coherence Spectral analyses were performed on the u and the v wind components. Since these
varied because of the differing energy in the u and v wind components, a single Coherence Spectrum
was obtained by using the weighted average of the u and v wind components described earlier. For
each Coherence Spectrum, the boundary wavenumber, f, .1, in cycle/ft, where the weighted coherence
indicated that one wind in the pair could no longer be identified from the other, was established. The
coherence boundary for these wind pairs is easily identified by the weighted average coherence-
squared function in Eq. (8) as

2 (foar) = 05,1 = 1,..., Ny, AT = 30,60,90,120 €

Figures 5 and 6 show two examples. In Fig. 5, a 30-minute wind pair, the weighted average wind
components reach a coherence-square of 0.5 at 0.000348 cycle/ft, or 2872 ft/cycle. In Fig. 6, a 90-
minute wind pair, the weighted average wind components reach a coherence-square of 0.5 at
0.000202 cycle/ft, or 4950 ft/cycle.

Coherence?

0.0001 0.0010
Wavenumber (cycles/ft)

Figure 5. Example of coherence squared of 30-minute wind pair from ER measured 870318 at
1630z and 1700z. U, V, and weighted average wind components are slowly varying up to
0.000348 cycle/foot (2872 feet/cycle) boundary.
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Figure 6. Example of coherence squared of 90-minute wind pair from ER measured
870318 at 1630z and 1800z. U, V, and weighted average wind components
are slowly varying up to 0.000202 cycle/foot (4950) feet/cycle) boundary.

The selection of 0.5 for coherence-square is not overly harsh since it does not require complete
coherence, but simply identifies the wavenumber when the uncoherent portion of the wind pair
becomes larger than the coherent portion. The corresponding boundary wavelength is equal to the
inverse of the wavenumber, as shown in Eq. (10).

Byag === L Ny, AT = 30,60,90,120 (10

n AT

A Wilcoxon Rank Sum Test" was performed to test the hypothesis that the boundary wavelengths are
statistically similar either between the ER and WR, or between the months containing winds which
generally result in more severe launch vehicle loads versus the other months of the year. The months
with these more severe winds are defined here as the five months, December through April. It was
determined that the ER and WR severe-month wind pairs coherence boundary wavelengths could be
considered to be part of the same statistical family (Figs. 7-10). However, the more severe and the
other months of the year should not be considered part of the same family, for either the ER or the
WR. In Figs. 7-10, the parameter T represents the sum of the ranks of one of the data sets; Z is a
standardized random variable using the mean and variance of T; and P is the probability that the
standardized random variable of any other partial sum of the ranks, z, is less than Z. The
probabilities, P, shown in Figs. 7-10, indicate that the two data sets are statistically similar.
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Figure 10. Rank sum test for 120-minute pairs showing ER and WR winter month
boundary wavelengths can be treated as single family.

Therefore, a reasonably sized statistical sample was obtained by combining the ER and WR wind pairs
from December through April. The number of wind pairs from the other months did not provide an
adequate sample at all time intervals, and are not addressed here. Only the severe-months wind pairs
with a boundary wavelength shorter than 10,000 ft were considered during the remainder of the

study. A total of 552 wind pairs were used (Table 3).
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Table 3. Winter Months Distribution of Wind Pairs Evaluated from Eastern Range (ER)
and Western Range (WR). Coherence Boundaries from These Months can be
Treated as Part of the Same Statistical Family.

ER Wind Pairs WR Wind Pairs
AT (min) 30 60 90 120 Sum 30 60 90 120 Sum Total
January 0 3 29 20 52 10 12 14 12 48 100

February 12 17 42 40 111 4 6 14 10 34 145
March 13 11 19 25 68 2 7.9 1230 9
April 8 13 24 25 70 20 18 7 15 60 130

December 1 9 22 14 46 9 1w 7 7 3 1
Sum 34 53 136 124 347 45 53 51 56 205 552







4. Reslults

The boundary wavenumbers obtained from Eq. (9) are displayed in histograms in Figs. 11-14 for the
30-, 60-, 90-, and 120-minute wind pairs. It is visually obvious that the mean and standard deviation
of the wavenumbers decreases as the wind pair time interval increases. The specific values are
presented in the figures. It is important to note that these distributions are not normal distributions.
Each distribution has a positive skewness. The mean values are summarized in the left column of
Table 4.
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Figure 11. Distribution of the 30-minute wind pairs boundary wavenumbers.
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Figure 12. Distribution of the 60-minute wind pairs boundary wavenumbers.
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Figure 13. Distribution of the 90-minute wind pairs boundary wavenumbers.
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Figure 14. Distribution of the 120-minute wind pairs boundary wavenumbers.

Table 4. Boundary Wavelengths Between Slowly-Varying and Turbulent Atmospheric Wind Wavelengths.
Contrasting Methods Result in Similar Values for Boundary Wavelengths

Boundary Wavelengths (feet)

from mean of from mean of from average
AT wavenumbers (1/wavenumbers) Coherence Spectrum
min  at Coherence=0.5 at Coherence=0.5 at Coherence=0.5
30 2304 2798 2528
60 3436 3965 3821
90 3952 4477 4346
120 4149 4725 4960

wavelength=1/wavenumber

Similarly, an alternate view of the data is obtained from the boundary wavelengths from Eq. (10),
which are displayed in histograms in Figs. 15-18. As expected, the mean and standard deviation of
the wavelengths increases as the wind pair time interval increases. These distributions also have a
positive skewness. The wavelength means are summarized in the middle column of Table 4. The
wavenumber and wavelength means for each of the time intervals would be expected to be different
since the individual values are inversely related and have significant standard deviations; however,
they are only approximately 15-20 percent different.
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Figure 15. Distribution of the 30-minute wind pairs boundary wavelengths.
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Figure 16. Distribution of the 60-minute wind pairs boundary wavelengths.
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Figure 17. Distribution of the 90-minute wind pairs boundary wavelengths.
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Another alternate view of the data was obtained by generating an average Coherence Spectrum from
the individual Coherence Spectra for each time interval, AT, of 30, 60, 90 and 120 minutes.

1
N

Ny;
EF:AT(f)’ AT = 30v60790,120 (1 l)

AT =)

I’:‘azve.AT (f) =

From these, an average Coherence boundary wavenumber was identified for each set of wind pairs
(Figs. 19-22); i.e.,

12, ar(fuesr) = 0.5,AT = 30,60,90,120 (12)

A=t

ave AT
faVc,AT

, AT =30,60,90,120 (13)

These are also presented as wavelengths in the right column of Table 4.

Wavelengths longer than those from Eq. (13) remain, on the average, slowly varying over the
specified time interval. Wavelengths shorter than these values, on the average, should be considered
non-persistent, and hence represent turbulence. This averaging process again resulted in boundary
wavelengths similar to the previous statistical values in the first and second columns of Table 4. An
advantage of this approach is that it is quantitative and minimizes engineering judgment. Plots of
Egs. (12)-(13) are shown in Figs. 19-22. The 30-minute wind pairs reach an average coherence-
square of 0.5 at a wavelength of 2528 ft, the 60-minute wind pairs at 3821 ft, the 90-minute wind
pairs at 4346 ft, and the 120-minute wind pairs at 4960 ft. The plus and minus one standard
deviation curves in Figs. 19-22 indicate the variation in the coherence-squared, and should not be
used to establish the variance of the wavelengths.
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Figure 19. Average coherence spectrum from 79 wind pairs measured 30 minutes apart.

Weighted average wind components are considered coherent up to the 0.00396
cycle/foot (2528 feet/cycle) boundary.
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Figure 21. Average coherence spectrum from 187 wind pairs measured 90 minutes apart. Weighted

average wind components are considered coherent up to the 0.000230 cycle/foot (4346
feet/cycle) boundary.
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Figure 22. Average coherence spectrum from 180 wind pairs 120 minutes apart. Weighted
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Finally, a curve (Fig. 23) was fit through the four average Coherence boundary wavelengths from the
right column of Table 4 plus the origin, since at AT=0 the wind pair should be coherent. An
excellent fit of the data was found to be the following simple function:

A, =460+ AT (14)
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Figure 23. Average wavelength boundary separating the slowly-varying and
turbulent components of winds as a function of elapsed time. Winds
measured at the ER and WR during the months, December through April.

This curve identifies the average boundary wavelength, A, in the measured wind, as a function of time
interval in minutes prior to launch. The boundary wavelength defines the average boundary between
the slowly-varying and the more rapidly-varying (turbulent) portions of the wind. On the average for
a time interval, AT, wavelengths longer than A, are slowly varying while wavelengths shorter than A,
are rapidly varying.
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5. Potential Uses

The boundary wavelengths in Eq. (14) are necessary to develop empirical gust loads analysis forcing
functions™ and to establish loads due to atmospheric turbulence.*"** Since the gust loads analysis
accounts for the turbulent components of the winds statistically, and the average boundary between
the slowly-varying and turbulent components of the wind can now be defined for the ER and WR
ranges, there is the possibility of retaining in the day-of-launch loads analyses only those components
of the winds that are slowly varying.*' It is suggested that, to conservatively bracket the variation of
this function, the values obtained with Eq. (14) be varied by an amount appropriate to the analysis

being performed. A gust loads analysis in Refs. 20-21is one such example.
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6. Conclusions

This paper presented the results of work performed to determine the wavelength boundary between
the slowly- and rapidly-varying components of the winds at the Eastern and Western ranges of the
United States. Methodology was developed, and historical databases of winds were evaluated. Results
include a simple function that relates the average boundary wavelength between slowly-varying and
turbulent components in measured winds to the time interval before launch. It was shown that longer
vertical wavelengths of wind profiles are more slowly varying over time than shorter wavelengths.

As a result of this work, it is now possible to identify in measured wind profiles, as a function of time
prior to launch, the slowly-varying and the turbulent component of measured winds for two launch
facilities. This information can be used to develop loads analyses utilizing only the appropriate
portion of the wind. It is believed that for several launch vehicles this will represent a reduction in
loads and, hence, higher launch availability without a reduction in predicted reliability.
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